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ABSTRACT  

Automatic melodic harmonization tackles the assignment of harmony content (musical chords) over a 
given melody. Probabilistic approaches to melodic harmonization utilize statistical information derived 
from a training dataset, producing harmonies that encapsulate some harmonic characteristics of the 
training dataset. Training data is usually annotated symbolic musical notation. In addition to the obvious 
musicological interest, different machine learning approaches and algorithms have been proposed for 
such a task, strengthening thus the challenge of efficient & effective music information utilisation using 
probabilistic systems. Consequently, the aim of this chapter is to provide an overview of the specific 
research domain as well as to shed light on the subtasks that have arisen and since evolved. Finally, new 
trends and future directions are discussed along with the challenges which still remain unsolved. 

Keywords: Probabilistic Harmonization, Machine Learning, Algorithmic Composition, Survey, Idiom 
representations 

INTRODUCTION  

In music, harmony is the use of simultaneous pitches (tones, notes), or chords accompanying a given 
melody (Benward & Saker, 2003). However, in order, to understand harmony, it is first necessary to grasp 
what melody is. Melody is a group of notes played one after the other, the tune that is often the easiest 
part of music to remember, the part that one may hum. Harmony is also a group of notes, except that these 
notes are played in the background, beneath and around the melody. The role of harmony role is to 
accompany the melody and is usually expressed as a sequence of different voices or instruments that play 
musical chords. A chord, in music, is any harmonic set of three or more notes that is heard as if sounding 
simultaneously (Benward & Saker, 2003). Chords are typically consisting of four voices ranging from a 
higher to lower pitch: Soprano, Alto, Tenor, and Bass. The assignment of musical chords in a given 
melody is called melodic harmonisation, which is the object of study for this chapter.  
 
The task of melody harmonization incorporates the preservation of balanced relations between the melody 
and all chord-composing sequences. This is achieved by a set of musical “rules” which defines a certain 
music style, such as classical, rock, jazz etc. The analysis of harmony is normally performed manually by 
music experts; however with the advent of computers, research has investigated whether all these rules 
can be analyzed and simulated by computerized frameworks. The practice of abstracting rules of harmony 
and placing them in a linguistic framework has been a part of computer science at least since the 1960s 
(Winograd, 1968; Jackson, 1967). Automatic melodic harmonization is a natural extension of harmonic 
analysis, and an important component in music information research. Its function is to clarify principles 
used by composers and musicians, and to capture these rules in an artificial intelligence (AI) framework 
(Koops, 2012).  



 
Automated melodic harmonization has so far been approached from two different angles: with either the 
purpose of finding a satisfactory chord sequence for a given melody (performed by the soprano voice) or 
with the purpose of finding the remaining three voices that complete the harmony for a given bass line 
(Figure 1). The four-part harmonization is a traditional part of the theoretical education of Western 
classical musicians and therefore numerous researchers have attempted to generate automatically the four-
part harmonization.  
 

 
Figure 1: Automated melodic harmonization approach: finding the remaining three voices that complete 

the harmony for a given soprano line. 
 

 
The task of automated melodic harmonization can be considered as a branch of algorithmic musical 
composition (Jacob, 1996) which is the application of a strict, well-defined artificial intelligent algorithm 
for the process of composing music. In the current context, music can be considered as a single 
instrument/voice or a combination of voices and instruments, as clearly shown by both the music industry 
and common practice.  As far as the computational part of the harmonization is concerned, machine 
learning algorithms and techniques have been used widely in the field. Nevertheless, most existing 
methods use a context generic approach (HMM), which makes  little use of domain specific information 
(Eddy, 1998). 
 
The aim and key contribution of this chapter is to provide an introduction to the importance and the 
requirements of automated melodic harmonization research, as well as to present a concise literature 
review of the main conceptual approaches in this area. The chapter presents newly emerging research 
directions concerning idiom representations and discusses the need for further research which stimulates a 
number of open challenges in the field of automated melodic harmonization. 
 
The rest of the chapter is organized as follows: The section on Background offers an introduction to 
automated melodic harmonization and justifies this area as an important research direction in music 
information research. The section on Automated Melodic Harmonization provides an overview of earlier 
automatic harmonization efforts and considers the methodological variations from a musicological point 
of view, detailing the numerous machine learning techniques that have been adopted. The section on 



Integrated Systems for Harmonizing presents integrated musical systems contributing to automatic 
harmonization with a special interest on systems with a graphical interface. The section on New 
Directions on Harmonizing discusses new musical idiom representations, especially as far as chords are 
concerned, and, finally, the chapter on Conclusions offers a brief and concise summary of existing 
research directions in automatic melodic harmonization. 
 

BACKGROUND 

Music information research is a young multi-disciplinary field, which started developing after the turn of 
the century, and has since managed to provide a valuable insight into the interaction of computer science 
and musical domains. For example, Lavranos et al. (2015) provide a comprehensive and extensive survey 
of music information research and its application to musical creativity and in particular, creative activities 
such as composition, performance and improvisation, and listening and analysis. 

Algorithmic Composition 

Musical intelligence may be defined as the simulation of thinking and creativity during the musical 
content creation/composition process (Cope, 1992). When it comes to musical composition, creativity 
often arrives in sudden and unexpected bursts, which only the same creative artist can evaluate and take 
advantage of. Thus, the mental state of an artist, during the process, is more than crucial for the musical 
composition. On the other hand, it is not just the inspiration of the artist that is important, but also the 
ability to utilize it, a characteristic of professional musicians’ compositions requiring extensive 
experience.   
 
All in all, creativity mostly comes into two steps: Musical intelligence thinking (that is commonly 
referred to as a ‘genius’ element) and hard work. While the former may produce ‘inspired’ music - it is 
not fully understood, and therefore it is difficult to repeat; the latter can be more easily realizable as a 
computer program that attempts to construct a set of rules that help musicians learn the process of 
creating a musical piece (Jacob, 1996). The ability of such systems to specify a series of deterministic 
steps for later execution is the state of the art in algorithmic composition. Algorithmic composition is, 
thus, the application of a rigid, well-defined algorithm for the process of composing music.  
 
An algorithm by definition is rigid, whereas creativity often breaks rules. This is why it is difficult to 
reproduce the musical intelligence of a human composer as they usually trade musical rules and bend 
them for creativity. It is thus common to consider algorithmic composition as a cheat when the composer 
is out of material. But it can also be thought of as a tool that simply makes the composer’s work advance 
faster by helping them to learn how to mimic musical rules that then lead to truly performing the act of 
being creative in musical terms. Therefore the goal of algorithmic composition as it is described in Jacob 
(1996) is to reproduce the creativity and the methodological steps for a composer, when he/she is on a 
hard work mode. 
 
Computers are not new to musical composition (Laske, 1981; Park, 2009). The notion of computer 
musical composition has been attributed to two different meanings that are complementary. The first 
revolves around computer-composed music that involves algorithmic composition (and is the subject of 
chapter), while the second is related to computer-realized music that involves conversions of musical 
scores or sounds to produce new electronic sounds (Hiller, 1981). The evolution of digital music is the 
object of study of the latter category and addresses the rise of electronic music with digital synthesizers 
and new types of sound syntheses, such as Physical Modeling Frequency Modulation. Generally, 
algorithmic composition is used for purposes such as generating a tonal melody, creating valid alternative 
chord progressions and suggesting possible harmonization over a melody. 
 



First Attempts 

For decades, computers have been used to compose music, typically via probabilistic or stochastic 
methods. Hiller (1981) proposed the creation of a computer-based framework used as a composing 
machine with facilities for composition algorithms, analog to digital conversions, sound synthesis 
algorithms and high level score language interpreters. He also claimed “that computer-assisted 
composition is difficult to define, difficult to limit, and difficult to systematize”. The publicity generated 
by Hiller and Isaacson's Illiac Suite (Hiller & Isaacson, 1979), a string quarter, attracted a number of 
individuals interested in merging new music with new technology. In their work, they utilized two basic 
approaches: a) random selection constrained by lists of rules and b) random Markov chains in which the 
relative likelihood of each option was conditioned by one or more immediately preceding choices.  
 
In algorithmic music composition, the intention and the expectations are far from modest, even though 
some comprehensive systems, such us Experiments in Musical Intelligence (EMI) developed by Cope 
(1989), can construct complex and complete pieces. EMI is a project focused on the understanding of 
musical style and stylistic replication of various composers. As an input, EMI uses musical works of the 
composers and outputs some unique characteristics of the works by using computational techniques to 
separate aspects of music, such as style, which have traditionally been investigated qualitatively or with 
exhaustive manual effort. Figure 2 shows the block diagram of the underlying structure.  
 
Xenakis (1992) is perhaps the best-known composer on algorithmic composition. He was the first to 
introduce statistical methods of composing for live ensembles: his work, Pithoprakta, exploits Gaussian 
distribution while Achorripsis uses Poisson's distribution of rare events to organize “parts” of sound. 
Tenney (1969), proposes the direct visual examination of the score. Note detection, statistics about 
periods between attacks, ranges of pitches, dynamics and several aspects of timbre are thus revealed. In 
addition to that, a significant feature for notating the rhythm is proposed. 
 
Until the mid-1980s, much of the attention was focused on timbre, rather than the structure of the music 
composed. As computers got more powerful, handling increasingly complex tasks that required more 
computer resources became an option. Nowadays, not only computing resources are readily and widely 
available for researchers but also more complex mathematical models have been tested. Genetic 
algorithms for composing tasks have been proposed by Jacob (1995). Therein, a composition process is 
described that combines traditional stochastic methods to complex rule-based systems, such as EMI, in 
order to achieve the simplicity of a stochastic process and the determinism of a rule-based system. 
 

Uses of Algorithmic Composition 

As seen from the indicative initial attempts aforementioned, the applications of algorithmic composition 
can be quite diverse. Besides the notion of an entire system capable to compose a new musical piece from 
scratch, which is considered unachievable even today as far as reliable results are concerned, the process 
of composition can be divided into sub parts which are to be examined separately (Brown, 2007).  
 
Applications of algorithmic processes are to enable the composer to specify music in a partial way. 
Traditionally, composing music has involved a series of activities, such as the definition of melody and 
rhythm, harmonization, writing counterpoint or voice-leading, arrangement or orchestration, and 
engraving (notation) (Fernández & Vico, 2013). Therefore, when the composer does not have the 
acquired skills to specify all the arrangement of the song, this can be seen as an extension of interpretation 
of users’ improvisation practices. In addition, ethical and intellectual property issues are taken into 
consideration. Except for the obvious belief that algorithmic composition is an overall cheat, music 
produced by algorithmic composition is considered somehow inferior, not because it  has been produced 
by an algorithm, but because it belongs to the designer of the algorithm, not the user (Jacob, 1996).  



 

 
 

Figure 2: Diagram for the general algorithm of EMI (Cope, 1989). 
 
However, algorithmic systems can be used to provide new ideas for the composer. Τhe probabilistic 
nature of the systems generating alternative possibilities (or paths) motivates the users to modify their 
compositions or stimulate further compositional ideas (Englert et al., 1988; Hiller, 1981; Laske, 1981). 
From this perspective, because of their design, those systems can be considered part of the creative 
process and act like an autonomous musical instrument. In addition to being applied during the stages of 
composition in order to create variations or extensions to existing material, algorithmic systems can be 
designed to create early pre-compositional material. 

AUTOMATED MELODIC HARMONIZATION 

 
Melodic harmonization is the assignment of musical chords over a given melody. Automated melodic 
harmonization can be considered as an application of algorithmic composition. It deals with basic musical 
information (notes, pitches, intervals, scales etc.), provided by annotated scores. Its aim is not to build a 
musical piece from scratch but to represent new or alternative harmonies as they were written on musical 
scores. Probabilistic and stochastic algorithms are used to study the separate voices of harmony, trying to 
find and learn patterns or rules for given musical pieces. The goal in itself is not only to produce new 
harmonies (which is considered as a new trend, see Section 5) but to understand and create probabilistic 
systems with machine learning algorithms that are capable of simulating the harmonization process.  
 
Statistics and information concerning the harmonic structures of each composer can be extracted and 
subsequently used for creating new harmonies or accompanying the creation process (see Section 4) or 
for combining different probabilistic systems to create new harmonies and structures (see Section 5). It is 
thus obvious that the use of melody harmonization is to provide new harmonies (pieces) and act like an 
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autonomous process for creativity or accompaniment for the user creating new variations and pre-
compositional material.  
 

Chorale Harmonization 

The task of automated melodic harmonization has been approached from two different perspectives: 
either as a means of finding a satisfactory chord sequence for a given melody (performed by the soprano 
voice), or as a means of identifying the remaining three voices that complete the harmony for a given 
melodic or bass line. The typical form in the latter type of harmonization is referred to as the “four-part 
harmony” task, which examines the proper combination of the soprano, alto, tenor, and bass voices. 
 
The four-part harmonization (Chorale harmonization) is a traditional part of the theoretical education of 
Western classical musicians. Given a melody, the task is to create three further lines of music which will 
sound pleasant when played simultaneously with the original melody. A good chorale harmonization will 
show an understanding of the basic ‘rules’ of harmony which characterize the composer and his style. A 
plethora of researchers (Ebcioğlu, 1988; Horner & Ayers, 1995; Allan & Williams, 2005; Yi & 
Goldsmith, 2007) have dealt with this task which covers all the aspects of melodic harmonization 
systems. The most important will be reviewed below. 
 
 

Types of Automated Harmonization Systems 

Research into computational analysis of harmony has a history of over four decades. Papadopoulos and 
Wiggins (1999), in a survey of algorithmic composition, review some representative examples of systems 
which employ different AI techniques, categorized based on their most prominent features, as follows: 
 

 Mathematical Models 
 Knowledge Based Systems 
 Grammars 
 Evolutionary Methods 
 Learning Systems 
 Hybrid Systems 

 
Since melodic harmonization is an application of algorithmic composition, herein, all efforts focusing on 
harmonizing given melodies, rather than composing entire pieces of music are addressed. Some key 
mathematical models featuring stochastic processes and techniques have already been presented earlier in 
this chapter as the first attempts of algorithmic composition (Section 1). As far as Knowledge Based 
Systems are concerned, these refer to AI systems which use symbolic information as well as rules and 
constraints. These are better known as Rule-based systems and have received a lot of attention prior to 
Machine Learning techniques. A grammar representation of music is a symbolic representation, referring 
to a generic class of composition by means of a list of grammatical production rules, or by means of a 
"parse tree" which graphically depicts the syntactic structure of a composition (Roads & Wieneke, 1979). 
Evolutionary Methods usually refer to Genetic Algorithms which have been shown to be very efficient in 
searching methods especially when dealing with very large search space problems (Goldberg, 1981). 
Learning Systems are systems which, in general, do not have a priori knowledge but instead learn features 
by examples from datasets. Finally, Hybrid Systems refer to the systems using combinations of the above 
AI techniques. 
 
However, the focus of this chapter lies on Learning Systems which are the most modern approach and 
widely used technique. Special mention will be given below to Markov models, which are of particular 



interest due to their simplicity of operation, although some machine learning algorithms of hybrid nature 
will also be presented. In addition, extensive references are also provided for interested readers for most 
of the early attempts. 
 
Grammars, Rule-based & Genetic Algorithms 
 
Due the number and complexity of musical harmony rules, the solution of creating grammars has received 
wide acceptance by researchers. One of the first grammars was proposed by Winograd (1968) where the 
user was required to manually remove any non-harmonic notes (passing notes, suspensions and 
ornaments) before the algorithm processed the remaining chord sequence. Steedman (1984) devised a set 
of chord substitution rules, in the form of a context-free grammar, for chord progressions in jazz twelve-
bar blues. Again, some years later, Steedman (1996) extended the previous work by using categorial 
grammars, by putting into the lexicon most of the information that is standardly captured in context-free 
phrase-structure rules. It should be noted that a flexible categorical grammar typically simulates more 
closely the listener’s perception and interpretation of the chord progressions (Steedman, 1993). 
 
However, music grammars solutions suffer mainly from ambiguity problems, making parsing symbolic 
information, in some cases, very expensive. In addition, the capability of such solutions to generate large 
number of musical strings is of a questionable quality, and thus an important issue too. Closely related to 
grammar-based approaches are rule-based approaches, which were used widely in early artificial 
intelligence systems. An early attempt of Higgins & Steedman (1971) used an elimination process 
combined with heuristic rules in order to infer the tonality given a fugue melody from Bach’s Well-
Tempered Clavier. Two “parsing” solutions were proposed: one to determine metrical units and another 
one to determine harmonic relationships between notes. The results were evaluated as promising for the 
future.  
 
Another notable effort was achieved by Ebcioglu (1988) who designed an expert system called 
CHORAL, for harmonizing four-part chorales in the style of J.S. Bach. The proposal contains 270 rules, 
which were found from empirical observation of Bach Chorales, for representing the knowledge required 
for harmonizing a given melody. The CHORAL system was written in BSL, a logic program language, 
and used back track-able process techniques to implement multiple viewpoints like the chord-skeleton 
(which produces one chord per step), individual melodic lines of each voice, and a voice leading module 
(which is used for the bass and descant melody lines of the chorale separately).The results demonstrated 
that tonal music of some competence can indeed be produced through the rule-based approach. 
 
Genetic Algorithms (GAs) are considered promising for music composition as these combine a form of 
‘creativity’ (the ability to explore a large search space) with constraints (creativity is controlled by the 
fitness function). Two cases are examined where the fitness function is used and evaluated either as an 
objective computable function or by a human. Papadopoulos and Wiggins (1998) used GAs with problem 
dependent genetic operators, variable length chromosomes and a fitness function which evaluated eight 
different characteristics of the melody (intervals, note durations, contour etc.) in order to evolve jazz 
melodies based on a given chord progression.  
 
Towsey, et al. (2001) addressed the difficulty to define fitness functions which capture the aesthetic 
qualities of the wide range of successful melodies. They described 21 melodic features used as the basis 
for a GA fitness function and for mutation procedures for 36 melodies. In their results claimed that, was 
not possible to draw strong conclusions from the cluster analysis of their dataset. 
 
Horner & Ayers (1995) introduced a genetic algorithm method for harmonizing four-part complex 
musical progressions. They addressed a problem that has fairly strict constrains, the voice leading 



between the voices. Therein, the harmonization problem was separated into the sub problems of finding 
all possible chord progressions and then identifying chords satisfying the voice leading problem. Finding 
the set of individual chords proved to be easy since there were few constraints. Subsequently, they used 
GAs based to natural selection, to solve the chord sequencing problem. Their work was successful, but on 
a very constrained problem, because all the chords were given as an input. 
 
Phon-Amnuaisuk & Wiggins (1999) reported a comparison between Genetic Algorithms (GAs) and a 
rule-based system using four-part harmonization of chorale melodies. The results indicated better 
performance for the rule-based system. However the conclusion from this experiment was that the quality 
of the output of any system is fundamentally dependent on the overall knowledge that the system 
(explicitly and implicitly) possesses.  
 
 

Markov models on Automated Melodic Harmonization 

 
Markov models are widely used on melodic harmonization. There are three commonly used Markov 
models in different situations of harmonization, depending on whether every sequential state is observable 
or not, and whether the system is to be adjusted on the basis of observations made: Markov Chain, 
Markov Decision Process and Hidden Markov Models. In the sequel, the most important research for 
harmonization using Markov models and their variations are presented. 
 
Hidden Markov Models (HMMs) are statistical Markov models in which the system that is being modeled 
is assumed to be a Markov process with unobserved (hidden) states (Eddy, 1998). In simpler Markov 
models it is assumed that future states depend only on the present state and not on the sequence of events 
that have preceded it (Markov assumption), and therefore the state transition probabilities are the only 
parameters. In a ΗΜΜ model, the state is not directly visible, in contrast to the output which is dependent 
on the state, and thus visible.  
 
According to the HMM methodology, a sequence of observed elements is given and a sequence of 
(hidden) states is produced as output. The training process of an HMM incorporates the extraction of 
statistics about the probabilities that a certain state follows another state, given the current observation 
element. Concerning the training process, statistics are extracted from a training dataset that incorporate 
four aspects: 
 

 The probability for each state to be a beginning state. 
 The probability for each state to be an ending state. 
 The probability that each state follows another state. 
 The probability of a state being present over an observation. 

 
Hidden Markov Models are generative models and widely used on melodic harmonization. Their 
formalization describes the targeted task very well: given a sequence of observed notes (melody), find the 
most probable (hidden) sequence of chords that is compatible with the observations. Figure 3 shows a 
diagram of a HMM for melodic harmonization purposes. 
 
Raphael and Stoddard (2003) proposed a probabilistic approach to functional harmonic analysis, using a 
hidden Markov model (HMM). Since the model was based on rhythm and pitch for training data they 
used a collection of MIDI files as a dataset. The harmonic analysis was performed on a fixed musical 
period and their system outputted the current key and the scale degree of the current chord. In order to 
make the computation tractable, a number of simplifying assumptions were made, such as the symmetry 



of all musical keys, etc. Although this reduced the number of parameters, the training algorithm was only 
successful on a subset of the parameters. 
 

 
Figure 3: An HMM diagram harmonizing a given melody 

 
 
Allan and Williams (2005) proposed a four-part harmonization method based on HMMs. Therein, two 
HMMs were utilized to generate chorales in the style of J.S. Bach. The first HMM was employed to yield 
a sequence of note intervals that accompanied each melody beat, while the second produced finer-scale 
ornamentations. In the Hidden Markov Models used there, the ‘hidden’ states of chords and harmonic 
symbols were in fact visible in the data during training. That means that they learned transition and 
emission probabilities directly from observations using their training data set of harmonizations. Their 
motivation was to create a model which can be used for the prediction of notes for filling three voices 
corresponding to the remaining harmonic lines at each time step. This was made possible using the 
Viterbi algorithm (Forney, 1973), which, given a new melody line, identifies the most likely state 
sequence, and thus a harmonization. 
 
Hanlon & Ledlie (2002) presented an automated system for the harmonization of four part chorales in the 
style of J.S. Bach called CPU Bach. Their solution divided the problem at hand into two subtasks. First, 
they created a chord sequence in which the melody was consonant and, secondly, they produced that 
harmony by filling in the other voice parts to be consistent with that progression. The first part computed 
the several chords to which the note of a given melody might belong and then it selected one sequence of 
chords by transitioning among these according to the HMM structure. The second module contained 
musical rules and solved the constraint satisfaction problem to assign actual notes, and therefore melody, 
to the voice parts. The output of the CPU Bach system was considered to be qualitatively quite good. 
 
Markov processes are based on the “Markov hypothesis” which states that the future state of a sequence 
depends only on the last state. Simple Markov Models are often estimated by counting occurrences and 
transitions in a corpus of training sequences. Once the model is learned, sequences can be generated 
simply by random walk.  Markov Decision Processes (MDPs) are thus considered to model stochastic 
systems. In this case, chord progressions can be viewed as a stochastic process, while the choice of a 
chord is similar to the choice of an action in MDP planning.  
 
Eigenfeldt & Pasquier (2010) presented a Markov model based method for generating harmonic 
progressions using a case-based analysis of existing material. The case-based system described by Spector 
& Alpern (1996) is able to generate Markov conditional probability distributions, using either first, 
second, or third-order chains. Therein, the user specifies a three-dimensional vector suggesting bass-line 
movement, harmonic complexity, and voice-leading tension in order to stochastically choose from the 



best matching solutions. Their proposed system is motivated by the requirement of offering a balance 
between user requested material and coherence within the database. 
 
Finally, Yi & Goldsmith (2007) introduced decision-theoretic planning techniques for automatic music 
generation. They used Markov Decision Processes for chord progressions. A state was represented as a 
10-tuple (S1, A1, T1, B1, S2, A2, T2, B2, S3, P), where Si, Ai, Ti, Bi were respectively the soprano, alto, 
tenor, and bass notes at time i, and P was a temporal position. Figure 4 shows an example of a single 
state.  The results showed that the harmonies that were produced were not very sophisticated but that it 
was possible to apply decision theoretic planning techniques to automate music generation. 
 

 

Figure 4: A single state represented as a 10-tuple using Markov Decision Processes (Yi & Goldsmith, 
2007). 

 

Hybrid Approaches and other Machine Learning Algorithms 

 
Most systems use the generative Hidden Markov Model (HMM), in which the chords are the hidden 
states and the melody is the observed output. Relations to other variables, such as the tonality and scale or 
the metric structure are usually ignored (Chuan & Chew, 2007; Raczyński et al., 2013). These approaches 
have been reported to fail in capturing essential aspects of the high-level musical structure and context, 
and thus limiting their usefulness, particularly for musically informed users. In the sequel, some new 
machine learning algorithms (Dynamic Bayes Networks, SVMs, Neural Networks) and some hybrid 
approaches, combining rule based systems with probabilistic or multiple probabilistic systems, are 
presented. 
 
Raczynski, et al. (2013) proposed a flexible way of developing discriminative probabilistic harmonization 
models, in which the time-varying tonality, as well as other musical variables can be explicitly taken into 
account. This was done by joining multiple simpler sub-models by means of linear or log-linear 
interpolation. To test their system, they trained and combined in this way the three sub-models that were 
created: the tonality, the melody and the chord bigram model. The evaluation was successful in terms of 
cross-entropy. They observed that log-linear interpolation yielded a model the cross-entropy of which was 
lower than the best of the component models and, also, better than the one achieved by linear 
interpolation (Jurafsky & Martin, 2014). 



 
Tree structure approaches were also examined by. Paiement et al. (2005) who presented a graphical 
model that captures the chord structures in a given musical style using as evidence a limited amount of 
symbolic MIDI data. Every chord in a chord progression depends both on its position (global 
dependencies) in the chord structure as well as on the surrounding chords (local dependencies). 
Parameters in the graphical models were learnt with the EM algorithm and the classical Junction Tree 
algorithm was used for inference. They showed that chord progressions exhibited global dependencies 
that could be better captured with a tree structure related to the meter than with a simple dynamical HMM 
that concentrated on local dependencies. 
 
Chuan & Chew (2007) proposed a hybrid system for generating style-specific accompaniment from a 
given melody in 3 steps. The first step concerned the determination of chord tones through utilizing 
Support Vector Machines (SVMs) while at a next step the system determined which notes in a given 
melody needed to be harmonized. According to these notes, triads were assigned, first at checkpoints 
(where the bars with all the possible chord solutions were available). The third step was the construction 
of possible chord progressions using neo-Riemanian transforms. 
 
The utilization of neural networks has also received attention. Hild, et al. (1992) utilized three kinds of 
neural networks. The first one generated harmonic tree structures from a soprano melody, the second one 
allocated concrete notes from these skeletons, while the third one was used for ornamentation. Cunha & 
Ramalho (1999) proposed a hybrid model for chord prediction showing that combining a neural network 
with a rule-based sequence tracker, improved the system’s performance. They defined their problem at 
hand as one that neural networks cannot adapt the unique characteristics for harmonizing a particular 
idiom, since it is impossible to have prior knowledge on neural networks. Their reported results were very 
promising. 
  
Suzuki and Kitahara (2013) developed two kinds of computational models, one that contained chord 
nodes (in the Bayesian networks) and another that did not. Both were capable of generating four-part 
harmonies using Bayesian networks. They wanted to investigate to what extent the model without chord 
nodes affected the harmonization in terms of voice leading compared to the model with chord nodes. 
Another approach, but this time with Dynamic Bayesian Networks (DBN), was proposed by Dixon, et al. 
(2005).  DBNs are graphical models representing a succession of simple Bayesian networks in time. 
These are assumed to be Markovian and time-invariant, so the models can be expressed recursively in two 
time slices: the initial slice and the recursive slice. They proposed two approaches for modeling musical 
harmony: using a probabilistic and a logic-based framework, respectively. The first was a chord 
transcription system which used a high-level model of musical context (chord, key, metrical position, bass 
note, chroma features and repetition structure), integrated in a Bayesian framework. The second approach 
used inductive logic programming to learn logical descriptions of harmonic sequences which 
characterized particular styles or genres. They showed that the combination of high-level harmony 
features with low-level features (audio features) could lead to harmonization accuracy improvements as 
well as to genre classification. 
 

INTEGRATED SYSTEMS FOR HARMONIZING 

So far, autonomous probabilistic systems for harmonizing given melodies by creating chord progressions 
have been examined. In the context of this work, we can divide these approaches into two categories: 
interactive and imitation systems. Imitation systems aim at representing stylistic information, i.e. to 
generate music in various styles, but they require symbolic information (transcripted musical scores) with 
manual human involvement and of course setting supervised learning algorithms. Most works with four-
part harmonization, that have been examined so far, belong in this category.  



 
Interactive systems, on the other hand, have been popular both in the research field as well as in 
commercial applications. Both share the common drawback of not being able to learn. Consequently, the 
music generated is strongly correlated to the musical input. This section addresses integrated musical 
systems contributing to automatic harmonization with combinations of imitation and interactive systems. 
Interactive systems which are irrespective of a graphical interface but are nevertheless intended for 
creating music by accompanying a voice (due to the ease of interactivity required by potential users) are 
also presented. 
 
The Continuator (Pachet, 2003) bridges the gap between two classes of traditionally incompatible musical 
systems, interactive musical systems and music imitation systems. Therein, the authors proposed a system 
in which musical styles are learned automatically in an agnostic manner allowing musicians to extend 
their technical ability with stylistically consistent, automatically learnt material. A MIDI system linked to 
an arbitrary MIDI controller was used to send the notes to a synthesizer which generated the instruments’ 
sounds. In reaction to the played musical phrase, the system generated a new phrase, built as a 
continuation of the input phrase, according to the database of patterns already learnt. An efficient 
implementation of a complete variable-order Markov model of input sequences was designed by building 
a prefix tree. Then the generation was performed using a traversal of the trees built from input sequences. 
 
Hyperscore (Farbood et al., 2004) is a graphical computer-assisted composition system for novice 
composers. The Hyperscore software tool addresses the combination of the development of musical 
algorithms for automating the compositional process and the design of an appropriate interface for 
humans to interact with the machine. It allows users to construct musical “motifs” out of notes; the 
volume and pitch of these motifs could then be manipulated using a graphical sketchpad. Finally, it 
should be noted that the Hyperscore is suited for use as both an educational tool and as a way to explore 
musical creativity. 
 
MySong (Simon et al., 2008) is a system that automatically chooses chords to accompany a vocal melody. 
It trains a HMM using a music database and uses that model to select chords for new melodies. Model 
parameters are intuitively exposed to the user. Creating music with MySong requires the user to record a 
vocal melody singing along with a computer-generated beat at a user specified tempo. Then the system 
transcripts the melody and chooses the best chord sequence, over 62 available unique chords from 
training data, by use of the Viterbi algorithm. Figure 5 shows the graphical user interface of MySong. The 
evaluation was done by means of comparing it with a commercially-available system for generating chord 
sequences, “Band-in-a-Box” (BIAB) (PG Music Inc, n.d.), which is primarily a system for generating 
accompaniment audio from chords, but includes a module for determining chords from a melody. All 
user-evaluation participants gave positive subjective ratings to MySong, and indicated an interest in the 
continued use of MySong.  
 
Finally, interaction through the user can be also based in emotions. Robin (Morreale et al., 2013) is an 
algorithmic composer specifically designed for interactive situations based on Valence & Arousal. It 
adopts a rule-based approach to compose original tonal music in classical piano style. Users can direct the 
composition in real time, conveying emotions that are translated into matching music in classical piano 
style. Its Harmony Generation Module is controlled by a first-order Markov process which states that 
chords correlation does not depend on previous states of the system. Robin’s evaluation was done with 
user-questionnaires and indicated that most of the users greatly appreciated the installation and in 
particular the quality of the music. 
 



 
 

Figure 5: MySong’s interface. A user can create an accompaniment using the record and playback 
controls and change the harmonization style by adjusting the “jazz factor” and “happy factor” sliders 

(Simon et al., 2008). 
 
 

NEW DIRECTIONS ON HARMONIZING 

So far our work has examined many melodic harmonization systems which aim to produce 
harmonizations of melodies that reflect the style of the input training examples (idiom). This is commonly 
pursued by utilizing chords and chord annotations that are characteristic of the idiom. Most of the 
examined research has focused on four-part harmonization (chorale). However, different idioms may 
present different representations. For example the chord representation for studies in the Bach chorales 
usually includes standard Roman numeral symbols, while jazz approaches encompass additional 
information. In addition, when designing chord detection algorithms, the lack of annotated databases 
makes evaluation and comparison of results difficult. 
 
Harte et al. (2005) address that very same problem of creating a music idiom that is independent of 
symbolic representations. They proposed a text representation for musical chord symbols that was simple 
to write and understand by musically trained researchers, yet highly structured and unambiguous to parse 
by computer programs. In that work, the authors verify that hand labeling of chords in music files is a 
long and arduous task and there is no standard annotation methodology, which causes difficulties sharing 
with existing annotations. Their proposed representation has a tree structure form and it is provided in an 
extendible format for future additions. 
 
Cambouropoulos et al. (2014) proposed a probabilistic new idiom independent representation for chords 
which is appropriate for encoding tone simultaneities in any harmonic context. The General Chord Type 
(GCT) representation allows the re-arrangement of the notes of a harmonic simultaneity and is adaptable 
to diverse harmonic idioms.  At the heart of the GCT representation is the idea that the ‘base’ of a note, 
simultaneity should be consonant. Thus, the GCT algorithm tries to find a maximal subset that is 
consonant. The algorithm gets for input a consonance vector, a Pitch Scale Hierarchy and the input chord 
(in terms of MIDI pitch numbers), and tries to give the voice intervals and types of the possible chords 
describing the simultaneity.  



 
Systems based on only one method have been shown to be less effective (Raczyński et al., 2013). This is 
true as it is quite difficult to embody all the musical rules that are required to do a proper harmonization. 
In addition, grouping musical rules in different systems is something which is also currently examined. 
For example, Makris et al. (2015) proposed a probabilistic approach for the automatic generation of voice 
leading for the bass note on a set of given chords. The proposed bass voice leading probabilistic model is 
based on the HMM and determines the bass voice contour by observing the contour of the melodic line. 
The motivation for developing a separate model for voice leading addresses the requirement of 
performing conceptual blending on melodic harmonization, by using chord progressions from a musical 
idiom and a characteristic voice leading features from another. 
 
Finally, except for creating new idiom representations and examining the rules of harmony separately for 
better results, research on the traditional four-part harmonization is still ongoing with new variations. An 
example is the work of Buys & Merwe (2012) who proposed chorale harmonization with Weighted 
Finite-state Transducers. Their framework makes possible to place domain-specific regular constraints on 
the generated sequences. The process of the harmonization is thus achieved in different steps, similar to 
those followed by human composers, in a full probabilistic setting. Each step is performed by inference 
through a weighted finite state transducer cascade. The evaluation was measured through entropy, with 
promising results in comparison to existing approaches.  
 
Another example is the work of Kaliakatsos–Papakostas & Cambouropoulos (2014), who proposed the 
hidden Markov model (HMM), in combination with additional constraints that incorporate intermediate 
fixed–chord constraints for melodic harmonization. Harmonization with fixed checkpoints is considered a 
crucial amelioration of previously used methods, since it enables the prior definition of important chords 
in intermediate positions of the melody to be harmonized (Chuan & Chew, 2007). These intermediate 
chords could either be specified by an algorithmic process that determines music structure on a higher 
hierarchical level, or directly inserted by a human annotator. Figure 6 shows an example of harmonization 
with constraints. The evaluation of the algorithm utilized a comparison between the proposed model and a 
typical HMM model which indicated completely different harmonizations between the two models. 
 

 
 

Figure 6: (a) The harmonization of a Bach chorale melody with the typical HMM methodology and (b) 
with constraints on the first and final chords (indicated with an asterisk). (Kaliakatsos–Papakostas & 

Cambouropoulos, 2014) 



 

CONCLUSIONS 

This chapter examined the task of automatic melodic harmonization which tackles the assignment of 
harmony (musical chords) over a given melody. Automated melodic harmonization can be considered as 
a subtask of algorithmic composition. Algorithmic musical composition is the application of a strict, well-
defined artificial intelligent algorithm for the process of composing music. An overview of  the reasons 
that led us to the need of algorithmic composition have been provided in Section 1 in addition to the 
corresponding uses on applications and the first early attempts in this area. However, the aim of melodic 
harmonization aim is not to build a musical piece from scratch but to represent new or alternative 
harmonies. 
 
This harmony is usually expressed as a sequence of musical chords that typically consist of four voices, 
known as four-part harmonization which, in turn, refers to chorale harmonization. Although different 
types of harmonization systems were reviewed, the current chapter focused on Machine Learning Systems 
which are the state-of-the-art and widely used techniques. Special mention was given to Markov models 
which are of particular interest due to their simplicity of operation and widely used on chorale 
harmonizations. One of the reasons that chorale harmonization is so popular, excluding any musical 
analysis, is the availability of transcripted musical data in digital form and ready for parsing with machine 
learning algorithms. The lack of available datasets affects and restricts the researches in developing other 
musical directions as the transcriptions of musical sheets in a symbolic digital form are usually done 
manually by music experts, thus disturbing the process. 
 
The above discussion was followed by an overview of, integrated musical systems contributing to 
automatic harmonization. Interactive systems with the ability to learn and with graphical interfaces have 
been popular both in the research field as well as in commercial applications. These are intended for 
creating music by means of accompanying a voice and, due to the ease of interactivity required by 
potential users, they make a positive contribution to both users and composers. In addition, it is important 
to note that, all the systems that were presented in section 2 were imitating the stylistic information of the 
harmonization from the training data. Integrated systems bridge this gap, combining interactive and 
imitating musical systems. 
 
Finally, the chapter addressed new musical idiom representations, as far as chords are concerned. Latest 
approaches in chord encoding representation have been shown to allow the development of generic 
harmonic systems that may be adaptable to diverse harmonic idioms. In addition, new trends of 
examining and including separate musical rules on the traditional four-part harmonization were reviewed. 
This discussion, overall, demonstrated the main approaches that can be used for the construction of 
computationally feasible models for conceptual blending using harmonic content from different music 
idioms. 
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